焼結法による YBa₂Cu₃O_{7-y}の 酸化物超伝導材料の作製

稲 岡 紀子生*・友 田 進**

Preparation of Oxide Superconductor (YBa₂Cu₃O_{7-y}) by Sintering method

Kimio Inaoka* and Susumu Tomoda**

1.はじめに

酸化物超伝導材料については,1986年にベドノルツと ミューラーらによって臨界温度30KのLa_{2-x}Ba_xCuO₄の 酸化物超伝導材料が発見され,つづいて液体窒素の沸点 77K(-196)より高い90Kの臨界温度をもつYBa₂Cu₃ O_{7-y}が発見され,さらに,臨界温度が100KのBi-Sr-Ca-Cu系や120KのTl-Ba-Ca-Cu系などがつぎつぎと報告 された¹²³⁾。

これらの酸化物はペロブスカイト構造(ABO₃)を持ち,超伝導性の出現の有無が,銅(Cu)と酸素(O)の 配位数に依存することなどが報告されている⁴⁾。

YBa₂Cu₃O_{7-y}(以下 Y123と表す)における酸素の添え 字(7-y)によって、ペロブスカイト構造上の酸素の量 に対する化学量論的な酸素量の欠損状態にあることが示 されている。酸素欠損濃度は超伝導材料の作製時におけ る焼きなまし処理の温度などの作製条件に依存すること が報告されている⁵。

本研究の目的は,液体窒素を用いて超伝導状態を実現 できるY123の超伝導材料を焼結法を用いて作製するこ と,そして超伝導状態において磁石の浮上現象を学生に 見せることのできる超伝導材料を作製することである。 作製した超伝導材料の特性を明らかにするために,破断 面の走査電子顕微鏡(以下 SEM と表す)による形態観 察,X線回折装置によるX線回折像,超伝導状態におけ る磁石の浮上現象(マイスナ効果)の確認と四端子法に よる温度に対する電気抵抗特性(臨界温度 Tc)などの測 定を行った。これらについて報告する。

2.実験方法

2.1 超伝導材料 (Y123) の作製法

超伝導材料の作製法として,われわれは,山香らの固

相反応法 (焼結法: sintering method) による作製⁶⁾を参 考にした。Y123超伝導材料の原料は酸化イットリウム (Y₂O₃), 炭酸バリウム (BaCO₃), 酸化銅 (CuO)で, 純度はそれぞれ99 9%のものを用いる。下記の反応式に 従ってY:Ba:Cuのモル比が1:2:3になる所定の 量を混合し, これを電気炉で加熱して反応させる。

 $1 / 2 (Y_2O_3) + 2 (BaCO_3) + 3 (CuO)$ $YBa_2Cu_3O_{7-y} + 2CO_2$

ここでは,酸化イットリウムを11 3g,炭酸バリウムを 39 5g,酸化銅を23 9gを計量し,自動乳鉢(メノウ製) で1時間粉砕混合する。まず,仮焼きとして電気炉の温 度を約5時間で900 まで上昇させ,2時間保持した後室 温に戻す。電気炉の温度の昇降と保持は電気炉内蔵のダ イヤグラムとしてプログラミングした。

つぎに,仮焼きによって得られた混合物を自動乳鉢で

25mm

図1 加圧容器の概要 左から芯抜き用治具,スペーサ,蓋,容器 容器は外径80mm,長さ85mmのSC材の中央部に直 径27mm,深さ25mmの底付き穴をあけ,さらに,直 径15mmのペレット押し出し用通し穴を底部にあけ たもの。

1時間粉砕混合する。粉砕混合された仮焼き粉体を手作 りの加圧容器に入れ,圧力500kg/cm²で,ペレットに成 形する。ペレットは芯抜き用治具によって加圧容器から 押し出す。ペレットの厚みはスペーサの厚さと入れる粉 体の量で決まる。加圧容器の概要を図1に示す。加圧に は主に空気圧縮機を用いるが,圧力依存性を調べるとき は,万能材料試験器を加圧用として利用する。

加圧成形したペレットを電気炉で本焼きする。本焼き の時間経過は,まず,約8時間かけて,930 まで上げ る。そのまま,930 で15時間保持する。つぎに,1時間 で870 まで下げた後,室温に戻す。これらの作業はすべ て大気中で行い,電気炉への酸素の導入は行わなかった。 この過程によって得られたペレットについて,超伝導状 態を示すかどうか,その形態や特性等を調べる。

2.2 ペレットの形態と特性の測定

得られたペレットの形態観察には, SEM を用いた。ペレットを破断し,その清浄な破断面を,金などの表面コーティングすることなしに,観察する。

結晶構造を調べるために,ペレットを粉体化し,X線 ディフラクトメータを用いて,X線回折像を得る。X線 は銅の Kα線(波長λ=154)である。管電圧は30kV, 管電流は10mAとする。

超伝導状態を確認するために,ペレットを液体窒素で 冷却し,磁石の浮上現象(マイスナ効果)を観察する。 磁石は直径10mm,厚さ1mm,質量05gのものを使用 する。磁石浮上の高さとペレット成形時に加えられる圧 力との関係を調べる。

電気抵抗特性は四端子法を用い,大気中で行った。ペ

図2 四端子法の回路図 P:ペレット,V:液体窒素容器,E:直流電源 T.C.:熱電対,W:氷水,R:X-Y記録計

レットにドリルで5個の穴をあけ,4つを四端子法に, 残り1つは温度測定のための熱電対用とした。熱電対に は比較的安価な銅コンスタンタンを用いた。ペレット温 度をより正確に指示させるために銅コンスタンタンの接 点を穴の中に埋め込み,それぞれの端子を銀ペーストで 接着し,さらに樹脂で固定する。図2に四端子法の回路 図を示す。4つの端子の外側の2つに直流電源から1A を流し,オームの法則(R=V/I)から内側の2つの端子 に現れる電圧値が抵抗値になることを利用する。内側の 2つの端子をX-YレコーダーのY端子に,熱電対の電 極をX端子に接続し,温度に対する電気抵抗曲線を記録 する。

3.結果と考察

3.1 ペレットの形態と×線回折像

加圧成形後のペレットは外径27 0mm,厚さ約5 mm の形状であるが,本焼き後は,ほとんどが収縮しており, ときには20%も小さくなることがあった。得られたペレ ットの写真を図3に示す。ペレットは黒色で,堅いセラ

図3 典型的なペレットの写真 ^{10mm} a:本焼き前(直径27mm), b:本焼き後

図4 ペレット破断面の典型的な SEM 像 a:広視野像,b:拡大像(数 μm の粒表面にステ ップが見られる)

四桁の数は撮影番号,25K は電子の加速電圧(25 kV),60*3 NM はスケールバーの長さが60×10³ nm であることを示す。

ミックス状であった。

本焼きして得られたペレットを破断し,その破断面を SEM で観察した典型的な像が図4である。図4a に見ら れるようにペレットの表面形態は,焼結によってミクロ ンオーダの大きさの粒が接合し合っていることがわかる。 すでに報告されている Y123の表面形態⁷⁾とほぼ同様な形 態をしている。図4bに見られるように,拡大像には, それぞれの粒に段(ステップ)のような模様が現れてい る。この模様は結晶成長の時に現れるステップであると 推測する。このことから焼結によって数ミクロンオーダ の粒状結晶が形成されていると推定される。

つぎに,ペレットを粉体化して,得られた X 線回折像 を図5に示す。20で33.0度の付近に高いピークが見ら れ,酸化物高温超伝導体(Y123)として報告された回折 像⁸⁾とよく似ている。よって,ミクロンオーダの粒が接合 した状態で,ペロブスカイト構造の Y123が得られたと考 える。

3.2 磁石の浮上(マイスナ効果の確認)

室温の状態でペレットの上に磁石を置くと当然ながら 磁石の浮上は見られない。発泡スチロールの容器内にペ レットを置き,液体窒素を注ぐと,ペレット付近から激 しく気泡が発生する。ペレットが液体窒素温度付近まで 冷却されると,気泡の発生が少なくなり,ペレット上の 磁石が数 mm ほど浮上することが確認できた。図6に磁 石浮上の様子を示す。浮いた磁石に回転力を加えると、

図6 磁石の浮上 a:側面から見た像,b:上部から見た像

磁石は回わり、しばらく回転し続ける様子が観察された。 磁石の浮上する高さが4mmから7mm程度の比較的浮 上力の強いペレットも得られた。磁石の浮上はマイスナ 効果といわれ,超伝導状態における完全反磁性によるも のである。よって,磁石の浮上の高さは反磁性の強さに よると推測される。そこで,ペレット成形時の圧力と反 磁性の強さとの関係を調べてみる。

ペレット成形時の圧力が, それぞれ500, 1000, 1500, 2000kg/cm² について磁石浮上の高さを調べた結果が表1 である。表1から磁石浮上の高さは,ペレット成形時の 圧力にはほとんど依存しないことがわかる。よって,反 磁性の強さはペレット成形時の圧力には依存しないもの と推測する。

マイスナ効果を示したペレットが、ペレット作製後、 大気中で1年ほどの時間経過によってマイスナ効果(磁 石の浮上)を示さなくなる傾向が見られた。このような 経年変化はペレットの形態変化にも見られた。作製時か らの経過時間が1年など長くなると、ペレットが膨張し

表1 ペレット成形時の圧力と磁石浮上の高さ

圧力(kg/cm²)	500	1000	1500	2000
高さ(mm)	6.0	5.0	7.0	4.0

たり,ひびが入ったり,割れるものもあった。Y123の材料は長時間の保存が難しいことがわかった。

3.3 ペレットの電気抵抗曲線

四端子法によって得られた,温度に対する電気抵抗曲 線を図7に示す。端子を取り付けたペレットを液体窒素 で十分冷却した後,電流1Aの通電状態において,磁石 の浮上が見られた。つまり,通電状態でもペレットは超 伝導状態にあることを示した。つぎに,ペレットを液体 窒素中から取り出し温度を上昇させる。図7は横軸が銅 コンスタンタン熱電対の起電力から推定される温度を表 し,液体窒素温度(77K)から上昇すると共に電気抵抗が 増加する様子を記録したものである。

温度の上昇と共に突然の電気抵抗の上昇が見られる。 また,電気抵抗が上昇すると同時に,磁石が落下した。 よって,電気抵抗の上昇と超伝導状態の消失がほぼ同時 であることが確認できた。超伝導状態から常伝導状態に かわる温度つまり臨界温度 Tc はこの付近にあることがわ かる。

臨界温度の測定は正確ではないが,電気抵抗値の立ち 上がりの温度をこのペレットの Tc と見なし,文献⁹⁾か ら,得られたペレットは91 3K の臨界温度を有する Y123 の斜方晶相であると推測する。

4.まとめ

本研究で Y123の超伝導材料を作製することができた。 得られた Y123の材料 (ペレット)の形態と特性などを以 下にまとめる。

- 1)ペレット断面の SEM 像は報告されている YBa₂ Cu₃O_{7-y}の SEM 像とよく一致した。
- ペレットの粉砕粉の X 線回折像は報告されている YBa₂Cu₃O_{7-y}の X 線回折像とよく一致した。
- 3)本報告の焼結方法で,特に酸素の導入なしに, YBa₂Cu₃O_{7-y}の超伝導材料が得られることがわかった。
- 4)ペレットを液体窒素で冷却することによってマイ スナ効果(磁石の浮上現象)を発現したことから, 液体窒素によって超伝導現象を発現する Y123の超伝 導材料を作製することができることを確認できた。
- 5)磁石浮上の高さは、ペレット成形時に加えた圧力 500から2000kg/cm²の範囲において、成形圧力に対 する明確な依存性は見られなかった。
- 6)四端子法を用いて,温度の上昇に対する突然の電 気抵抗の上昇と超伝導状態の消失がほぼ同時である ことが確認できた。

謝辞 辞

加圧容器の工作において本校の山下敏久技官の協力を 頂いたことに感謝の意を表します。

引用文献

- 1)北沢宏一,岸尾光二,長谷川哲也,笛木和雄:応用物理 56(1987) p. 605.
- 2)北沢宏一:新超伝導体(1987,日経マクロデバイス) p. 133.
- 3)山香英三,太刀川恭治,一ノ瀬昇:高温超伝導入門 (1989,オーム社)p.14.
- 4)井原英雄:新超伝導体(1987,日経マクロデバイス) p. 52.
- 5) 笛木和雄:新超伝導体(1987,日経マクロデバイス) p. 40.
- 6)山香英三,太刀川恭治,一ノ瀬昇:高温超伝導入門 (1989,オーム社)p.85.
- 7)山香英三,太刀川恭治,一ノ瀬昇:高温超伝導入門 (1989,オーム社)p.107.
- 8)山香英三,太刀川恭治,一ノ瀬昇:高温超伝導入門
 (1989,オーム社)p.90.
- 9) 武藤芳雄:新高温超伝導体の物性探訪と材料化への 期待:新超伝導体(日経マグロウヒル社,1987年) p.80.