偏心球状介在物を有する丸棒の引張り _{鶴 秀登}*・_{柏原 一}仁** On the Tension of a Cylindrical Bar with an Eccentric Spherical Inclusion

Hideto Tsuru^{*}, Kazuhito Kashihara^{**}

Abstract

The tension problem of a cylindrical bar containing a spherical inclusion located eccentrically from the center line is treated by finite element method (FEM), stresses at the nearest and the farthest points on the bonded boundary from the outer boundary are given and numerical results are examined.

1. 緒 言

機械や構造物の部材の強度評価には,切欠きの応 力解析は欠かせない.機械や構造物に大きな荷重が かかると部材の応力集中部から初期き裂が発生する. 応力解析はその位置を知り,また応力の程度により, き裂発生時期を検討するデータを与えることができ, 設計に大きく貢献してきている.さらに,破壊現象 を定量的にとらえるには材料試験と切欠きやき裂の 数値解析などが重要で,多くの研究がなされている ^{[1][2][3]}.数値解析では,コンピュータの高性能化と計 算ソフトおよびプリ・ポストプロセッサ技術の進展 により,複雑な形状や多くの条件を与える問題が取 扱えるようになり,精度良い結果を与えてきている.

そこで本研究では,偏心球状介在物を有する丸棒 の引張り問題を解析し,3次元弾性応力問題におけ る偏心した球状介在物の大きさとその剛性の影響を 偏心量とともに検討し,設計に有益なデータを提供 する.

2. 解 析 手 順

図1に引張りを受ける偏心球状介在物をもつ円形 断面棒(丸棒)の問題図を,座標系と結果の整理に用 いる丸棒の直径2R,長さ2L,縦弾性係数E_m,介 在物の直径2a,縦弾性係数E_i,そしてその偏心量 e などの記号とともに示す.このように球状介在物の 位置が丸棒断面中心から偏心している問題は,偏心 の程度によっては解の精度を保つため分割数を変え たり,不等分割を用いたりする必要が出てくる.こ のため偏心していない問題と比べ取扱いが複雑とな り,しかも対称面が2つに減るので全体形状の1/4 の領域を用いて解析することになり計算時間も長く なる.そこで,ある程度の誤差を許し,自動分割を用 いた数値計算を行った.そして介在物の大きさ,偏 心位置に関係なく介在物の対称面(x軸を含むy面) 上の半円周を240分割,丸棒の同一面上の外半周も 40分割の一定とした.

図2は数値計算で使用した要素分割図の例(a/R = 0.5, e/R = 0.3) である.以下で述べるが,このよう に分割数を一定にしても偏心量に関係なく誤差は5 %以下と推定される.また解析領域としての棒の長 さについては,長さの影響が応力集中にでないよう な棒の長さを用いて解析した.具体的には,丸棒の直 径 2R = 200mm, 長さ $2L = 2 \times 2R = 400mm$, 縦 弾性係数 $E_m = 206 GPa$ とし,介在物は,直径 2a を a/R = 0.3, 0.5, その縦弾性係数 $E_i \ge E_i/E_m = 0$, 0.25,0.5,1,5,10 などで与え,丸棒中心からの偏 心量 e が e/R = 0.1, 0.3, 0.5 の場合の数値計算を 行った.なお,介在物は母材と離れることなく境界 上で母材と同じ変位をもつと仮定した.数値解析に は市販の有限要素法解析ソフト(プリ・ポストプロ セッサ MSC.Patran, ソルバ MD.Nastran) を用 い,四面体要素,4節点で計算した.

Fig. 1 偏心球状介在物をもつ丸棒の引張り

Fig. 2 要素分割図 (1/4 領域 *a*/*R* = 0.5, *e*/*R* = 0.3)

3. 数値解析結果と検討

まず,数値計算に用いる丸棒の長さの影響につい て検討した.一般に,3次元問題は2次元問題に比 べ局所的な影響が減衰しやすく,また介在物が剛性 をもたない孔の問題が最も厳しい応力集中の原因^[4] であるため,この検討には有限板に孔をもつ2次元 問題を用いて長さの影響を取扱った.

図 3 に孔の直径 2a と板幅 2W(丸棒直径 2R に相当)の比 a/W = 0.5で,孔の偏心量 $e \ge W$ の比 e/W = 0.3の結果と,a/W = 0.7でe/W = 0.1の結果を,縦軸に図 1 の点 A, B における孔縁の荷重方向応力 σ_y^A , σ_y^B を負荷応力 σ_0 で無次元化した値を取り,横軸に板の長さ 2L と板幅 2W の比 L/Wを取って示す.L/W = 2.0程度で長さの影響がないことがわかる.なお,図中にa/W = 0.5,e/W = 0.3の時の帯板 $(L/W \to \infty)$ の結果^[5]も示す.

次に解の精度を検討するために,無限体中の円形 介在物問題の理論解あるいは信頼できる数値解^[3] と の整合性を検討してみた.

図4は引張りを受ける丸棒中央に球状介在物がある問題の結果である.縦軸に介在物との境界上の点 Aにおける荷重方向応力 σ_y を負荷応力 σ_0 で無次元

Fig. 3 一様引張りを受ける偏心円孔をもつ有限板 の縦横比の影響

 Fig. 4
 中央に球状介在物をもつ丸棒の引張りに

 おける界面 A 点の応力を用いた解の精度
 (e/R = 0)

化した値 σ_y / σ_0 を取り,横軸は介在物直径 2a と丸 棒直径 2R の比 a/R,そして介在物と母材の剛性比 E_i/E_m をパラメータにして示す. $a/R \rightarrow 0$ の信頼 できる結果に本解析結果が無理なく近づいているこ とがわかる.この結果から,本解析結果はおおよそ 誤差 5%以下と考えられる.

図 5 に空かを有する丸棒の引張り問題における,負荷方向に対称な丸棒円断面上の荷重方向応力 σ_y の分布を,空かの縁周りと丸棒外周について示す.縦軸に σ_y/σ_0 ,横軸は丸棒の中心および空かの中心回りに図中に示すx軸からの角度 θ , θ' を取った.空かの大きさa/R = 0.5について,空かが中央にある場合と偏心量e/R = 0.3の場合について示す.中央に

Fig. 5 荷重方向対称面上の空か縁周りと丸棒外周 の荷重方向応力 σ_u の分布 (a/R = 0.5)

空かがある場合,縁と外周の応力はそれぞれ位置に 関係なく一定であるが,本計算ではやや不安定な結 果となっている.しかし,この結果からも前述のよ うに本計算の精度は誤差5%程度と推測できる.応 力分布の不安定な原因としては,対称面上の空か縁 のみ2次元的に小さく分割し,その他は自動分割を 用いたために3次元的な要素の大きさが不均一とな り,また四面体要素4節点と少ない節点で計算した ことなどで節点応力に影響がでたと思われるが,こ のような分割法でも誤差の程度は小さいことがわか る.そしてこの応力分布の結果を見ると,負荷方向 に対称な断面で介在物境界上の最大応力と最小応力 は,偏心した介在物を中心としたx軸から $\theta' = 0°$ と180°の点A,B付近に生じることがわかる.そ

Fig. 6 介在物界面 A, B点の荷重方向応力 (a/R = 0.3)

Fig. 7 介在物界面 A, B点の荷重方向応力 (a/R = 0.3)

こで,以下は点A,Bに着目して結果を整理した.

図 6 に介在物の大きさ a/R = 0.3 の場合につい て,縦軸に介在物との境界上の点 A, B の無次元応 力 σ_y/σ_0 ,横軸に介在物の偏心量を表す e/Rを取り, パラメータに介在物の剛性を表す E_i/E_m を用いて 整理し,その結果を示す.介在物の剛性が低いほど 孔縁の点 A, B の応力は大きく,そしてその場合ほ ど偏心量が大きくなるにしたがって点 A, B の応力 差も大きくなる.また介在物の剛性が大きくなるほ ど,偏心量に関係なく点 A, B の応力はほぼ同じで, しかも一定である.この介在物の大きさa/R = 0.3では,空かも含めて偏心量 e/R = 0.2 程度までは偏 心の影響は非常に小さい.

図7は図6の横軸とパラメータを入れ替えて整理

Fig. 8 介在物界面 A, B 点の荷重方向応力 (a/R = 0.5)

Fig. 9 介在物界面 A, B点の荷重方向応力 (a/R = 0.5)

した結果である.介在物の剛性が大きくなると点A, Bの応力は小さくて差がなくなり,偏心量にも無関 係でほぼ1本の曲線で示されることがこの図からも わかる.そして空かの偏心量が大きくなるほど応力が 大きくなり,空かの問題が重要であることがわかる.

同様に図8と図9に介在物の大きさa/R = 0.5の 結果について示す.このように介在物が大きくて剛 性が母材より小さい場合,境界上の点A,Bの応力 は大きく,しかも偏心量が小さくてもその差は顕著 である.介在物の剛性が母材の剛性より大きいと, 前述したように偏心量に無関係にほぼ一定で,図9 のように1本の曲線で表せる.

表1と表2に図6,7と図8,9の数値結果を示す. なお,表中に介在物境界の荷重方向 y 軸上の点 C に おける応力 σ_x , σ_y , σ_z も併せて示す. これらの結 果は,介在物の剛性が母材より大きい場合に重要で, 特に点 C の σ_y の値は点 A, B の σ_y より大きくな ることに注意を要する.

4. 結 言

偏心球状介在物を有する丸棒の引張り問題を市販 の有限要素法解析ソフトを用いて数値解析し,3次 元弾性応力問題における偏心した球状介在物の大き さとその剛性の影響を偏心量とともに検討し,設計 に有益なデータを提供した.概要を以下に示す.

- 介在物の剛性が低いほど孔縁の点 A, Bの応力 は大きく,そしてその場合ほど偏心量が大きく なるにしたがって点 A, Bの応力差も大きくな る.また介在物の剛性が大きくなるほど,偏心量 に関係なく点 A, Bの応力はほぼ同じで,しか も一定である.この介在物の大きさ a/R = 0.3 では,空かも含めて偏心量 e/R = 0.2 程度まで は偏心の影響は非常に小さい.そして空かの偏 心量が大きくなるほど応力が大きくなり,空か の問題が重要であることがわかる.
- 介在物の大きさ a/R = 0.5のように介在物が大きく、そして剛性が母材より小さい場合、境界上の点A、Bの応力は大きく、しかも偏心量が小さくてもその差は顕著である、介在物の剛性が母材より大きいと、前述したように偏心量に無関係にほぼ一定となる、
- 3. 介在物の剛性が母材より大きい場合に点 C の応 力は重要で,特に点 C の σ_y の値は点 A, B の σ_y より大きくなることに注意を要する.

文 献

- [1] 改訂 材料強度学 (2005), 日本材料学会.
- [2] 矢川 元基:破壊力学, 培風館, (1988).
- [3] 村上 敬宜: 応力集中の考え方, 養賢堂, (2005).
- [4] 堀辺他3名:円形介在物を有する帯板の引張り、
 日本機械学会論文集(A編),72-719(2006-7).
- [5] 石田 誠:偏心円孔を有する帯板の引張り,日本 機械学会論文集,19巻87号,昭28, pp.100-106.

Table 1 介在物界面上 A , B , C 点の応力 (A_y , C_x 等 は点 A の σ_y , 点 C の σ_x 等を表す)(a/R =0.3)

	E_i/E_m	σ/σ_0	e/R				
			0	0.1	0.3	0.5	
	0	A_y	2.11	2.13	2.22	2.44	
		B_y	2.11	2.12	2.14	2.17	
		C_x	-0.744	-0.722	-0.737	-0.747	
		C_y	0.001	-0.017	-0.000	-0.016	
		C_z	-0.749	-0.729	-0.753	-0.781	
	0.25	A_y	1.65	1.66	1.69	1.78	
		B_y	1.65	1.66	1.66	1.68	
		C_x	-0.438	-0.449	-0.458	-0.443	
		C_y	0.419	0.406	0.403	0.417	
		C_z	-0.438	-0.438	-0.458	-0.473	
	0.5	A_y	1.36	1.36	1.38	1.41	
		B_y	1.36	1.36	1.36	1.37	
		C_x	-0.248	-0.253	-0.257	-0.251	
		C_y	0.682	0.676	0.675	0.680	
		C_z	-0.248	-0.247	-0.257	-0.264	
	1	A_y	1.00	1.00	1.00	1.00	
		B_y	1.00	1.00	1.00	1.00	
		C_x	0.000	0.000	0.000	0.000	
		C_y	1.00	1.00	1.00	1.00	
		C_z	0.000	0.000	0.000	0.000	
	5	A_y	0.299	0.300	0.301	0.324	
		B_y	0.299	0.296	0.299	0.301	
		C_x	0.524	0.530	0.532	0.529	
		C_y	1.60	1.62	1.62	1.62	
		C_z	0.524	0.518	0.529	0.533	
	10	A_y	0.141	0.142	0.149	0.189	
		B_y	0.141	0.138	0.141	0.146	
		C_x	0.647	0.655	0.656	0.653	
		C_y	1.74	1.76	1.75	1.75	
		C_z	0.647	0.640	0.651	0.654	

Table 2 介在物界面上 A , B , C 点の応力 (A_y , C_x 等 は点 A の σ_y , 点 C の σ_x 等を表す)(a/R = 0.5)

	σ/σ_0	e/R				
E_i/E_m		0	0.1	0.3	0.4	
	A_y	2.38	2.50	3.15	3.91	
	B_y	2.38	2.35	2.30	2.36	
0	C_x	-0.785	-0.782	-0.763	-0.712	
	C_y	-0.039	-0.028	-0.002	-0.017	
	C_z	-0.799	-0.786	-0.830	-0.858	
0.25	A_y	1.77	1.81	1.97	2.16	
	B_y	1.77	1.74	1.74	1.75	
	C_x	-0.463	-0.471	-0.468	-0.447	
	C_y	0.402	0.426	0.431	0.444	
	C_z	-0.477	-0.478	-0.494	-0.495	
	A_y	1.40	1.42	1.48	1.55	
	B_y	1.40	1.40	1.39	1.40	
0.5	C_x	-0.255	-0.259	-0.258	-0.251	
	C_y	0.683	0.696	0.698	0.707	
	C_z	-0.263	-0.263	-0.269	-0.269	
	A_y	1.00	1.00	1.00	1.00	
1	B_y	1.00	1.00	1.00	1.00	
	C_x	0.000	0.000	0.000	0.000	
	C_y	1.00	1.00	1.00	1.00	
	C_z	0.000	0.000	0.000	0.000	
5	A_y	0.323	0.307	0.311	0.286	
	B_y	0.323	0.305	0.302	0.306	
	C_x	0.488	0.503	0.494	0.488	
	C_y	1.55	1.55	1.52	1.49	
	C_z	0.507	0.508	0.503	0.492	
10	A_y	0.186	0.171	0.190	0.170	
	B_y	0.186	0.160	0.155	0.153	
	C_x	0.595	0.614	0.602	0.594	
	C_y	1.66	1.66	1.62	1.59	
	C_z	0.619	0.620	0.621	0.596	