Studyaid D.B.による数学問題データの蓄積1

久保康幸*

Collection (1) of the examination of the mathematics with Studyaid D.B.

Yasuyuki KUBO*

Abstract

I built collection of the issue of examination of the mathematics with Studyaid D.B.

1. はじめに

全国の高専3年生を対象に、毎年1月に行われる学 習到達度テストについて、弓削商船高等専門学校(以下「本校」という。)で私が3年生の数学1を担当する ときは、過去問を事前にテスト形式で解かせて実力を 伺っている。少し蓄積が出来たので、ここに整理して おきたい。

学習到達度については、高専のホームページに過去3 年分の問題と正解一覧が公表されている。10の領域の うち、本校が受検しているのは6領域であって、その うち、私が授業にテスト形式で利用しているのは領域1 と領域2である。

2. 蓄積した問題について

公表された問題と解答をただ蓄積するのではなく、 私による解説と解答をつけ、テスト形式の配布プリン ト教材にするために、数研出版のStudyaid D.B.(以下 「Studyaid」という。)を利用しており、1枚のテスト 用紙に収めるための修正をしている。

Studyaid の特長を活かして、一つのファイルに問, 答,解説を入力し、スタイル設定によって表示を切替 えるのが理想であるが、過去のファイルを開くと、様 式が統一されていない。

この機会に過去のファイルを直すことにした。しか し、ここでは、切替えた表示を複数の図によって示す ことしか出来ない。

3. 平成19年度のテスト

まず、問と答を入力する。別枠で解説を入力する。 テスト実施には問のみを印刷する。問のみの入力ページを作るわけではない。

図2 説明を別枠に入力

* 〈所属〉総合教育科

図3は、図1にあったピンクの部分(答の部分)が 印刷されていないだけで、他の部分に違いはない。

4. 平成20年度のテスト

これも、まず間と答を印刷したものを図示する。

図4 間と答を印刷した場合

)

平成00年度 後期中間試験(数学1) 久保 3年

 $\begin{array}{cccc} \frac{1}{2} \frac{1}{2} \frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{2} \frac{1}{2$

→ → − − − −
 → − − −
 → − −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 → −
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →
 →

 $\begin{array}{c} \underbrace{\mathbf{G}}_{\mathbf{C}} = \left\{ \begin{array}{c} \sum_{i=1}^{n} \left\{ \mathbf{C}_{i} \in \mathcal{C}_{i} \in \mathcal{C}_{i} \in \mathcal{C}_{i} \in \mathcal{C}_{i} \right\} \\ \mathbf{G}_{i} \in \mathcal{C}_{i} = \left\{ \mathbf{C}_{i} \in \mathcal{C}_{i} \in \mathcal{C}_{i} \in \mathcal{C}_{i} \in \mathcal{C}_{i} \in \mathcal{C}_{i} \\ \mathbf{G}_{i} \in \mathcal{C}_{i} = \left\{ \mathbf{C}_{i} \in \mathcal{C}_{i} \in \mathcal{C}_{i} \in \mathcal{C}_{i} \in \mathcal{C}_{i} \in \mathcal{C}_{i} : \mathbf{C}_{i} \in \mathcal{C}_{i} \in \mathcal{C}_{i} \\ \mathbf{G}_{i} \in \mathcal{C}_{i} = \left\{ \mathbf{C}_{i} = \left\{ \mathbf{C}_{i} \in \mathcal{C}_{i} \in \mathcal{C}_{i} \in \mathcal{C}_{i} \in \mathcal{C}_{i} \in \mathcal{C}_{i} \in \mathcal{C}_{i} : \mathbf{C}_{i} \in \mathcal{C}_{i} \\ \mathbf{G}_{i} \in \mathcal{C}_{i} = \left\{ \mathbf{C}_{i} \in \mathcal{C}_{i} \in \mathcal{C}_{i} \in \mathcal{C}_{i} \in \mathcal{C}_{i} \in \mathcal{C}_{i} \in \mathcal{C}_{i} : \mathbf{C}_{i} \in \mathcal{C}_{i} \\ \mathbf{G}_{i} \in \mathcal{C}_{i} = \left\{ \mathbf{C}_{i} \in \mathcal{C}_{i} \in \mathcal{C}_{i} \in \mathcal{C}_{i} : \mathbf{C}_{i} \in \mathcal{C}_{i} : \mathbf{C}_{i} \in \mathcal{C}_{i} \\ \mathbf{G}_{i} \in \mathcal{C}_{i} \in \mathcal{C}_{i} \in \mathcal{C}_{i} \\ \mathbf{G}_{i} \in \mathcal{C}_{i} = \left\{ \mathbf{C}_{i} \in \mathcal{C}_{i} \in \mathcal{C}_{i} : \mathbf{C}_{i} \in \mathcal{C}_{i} : \mathbf{C}_{i} \in \mathcal{C}_{i} \\ \mathbf{C}_{i} \\ \mathbf{C}_{i} \in \mathcal{C}_{i} \\ \mathbf{C}_{i} \\ \mathbf{C}_{$

干成00年度 後期中間は0歳 (数字1) 久保 3年 = 800年ま120,000年16 M0-() 名前(550)) [] ¹¹ 2050年 (□⁻¹,□⁻⁴ (□ 3+41 125396 (□⁻¹,□⁻⁴) □⁻¹/₂ 25594 (□⁻¹,□⁻⁴) (0 ¹⁺²/² 25594 (□⁻¹,□⁻¹)

$$\begin{split} & \underbrace{\left\{ \begin{array}{l} \begin{array}{l} \underbrace{\left\{ \mathbf{x} \right\}}_{i=1}^{i} \in \mathcal{M}(\mathcal{M}_{i}^{i}, \mathbf{x}^{-1}) & = i \in \mathcal{M}_{i}^{i} \in \mathcal{M}_{i}^{i} \in \mathcal{M}_{i}^{i} = i \in \mathcal{M}_{i}^{i} \in \mathcal{M}_{i$$

 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■

 $\begin{array}{c} \ldots \ldots = \sigma, \frac{-\sigma}{\sigma} = 1 + \delta \\ \hline b = a > 0, b > 0, 0 \geq 0, \sqrt{a + b} = \sqrt{a} + \sqrt{b} \\ b = \frac{\sqrt{b}}{\sqrt{-3}} = -\sqrt{2} \ \epsilon \end{array}$

 ○ カメンパをなっていたい。
 ○ カメンパンだしにありう業素ととする、22% エジーはいってい時期はを D=2¹⁻⁴ cel とするときへの特定を入え、5素メ2=-00歳)
 ① 加力増減 cel + bic + col 参照 久立つの実施発育 力力のの必要+-分泌作 年、25%の一部分違べ、(5) ○
 D かくる D Dg3 ④ D>0 ④ Dg6 Φ D=0

 2) 込や年来。41+34+(2)00 FVへての東東 41-0-1-でなり入っための必要 +金倉作文へのペータ0 5 個人。(単) ○
 0 ε 2 0, D × 0
 0 ε 3 0, D × 0
 0 ε 4 0, D × 0
 0 ε < 0, D × 0
 0 ε < 0, D × 0</

 $\begin{array}{c} \hline \mathbf{S} & \Re \, \mathbf{K} \, \mathbf{x} = 1 - \sqrt{7 - 5 \epsilon} \, \mathbf{K} \, \mathbf{S} \, \mathbf{x} \otimes \mathbf{0} - \mathbf{0} \, \mathbf{b} \in \mathbf{M} \, \mathbf{c} \,$

図5 説明の印刷

説明は、学生に配布するものではないので簡単なメ モで済ましている。

図6 間のみの印刷

図6は、図3と同様に、図4にあった答の部分が印 刷されていないだけである。

5. 平成21年度のテスト

前の2例で、どのようになるか分かるから、ここからは、問のみの印刷例を省略する。

平域00年度 後期中間試験(数学1) 久保 3年 (1) 整式 x²+kx²-2x-1 が x+1 で割り切れるとき、k=0 である。 валайтарын, дааты, Жа.()名前(<u>將茶</u>例) (5時) (2) 繋式、5x³ + 4x² + x + 2 を翌x − 1で割ると帯は2x² + 2x + 2)、余り は3である。 → 22 = 3、22 = 1 (5歳×2=10点) 1)次の各式の⑦ 206よび(二):自てはまる数を苦えよ。ただし、/は感数 単位を表し、 ⑤次の用いに答えよ。(5点×2=10点)
 (1) 2次方程式2x²-6x+1=0の解は、x=^{3±√7}/2 である。 (1) $(2x-3y)^2 = 8x^3 - 36x^2y + [3y^2 - 27y^3] \rightarrow [34]$ (2) $\sqrt[3]{\sqrt{a}} = \sqrt[3]{a} \rightarrow \square = 6$ (2) Statistical $\frac{1}{x-1} - \frac{1}{x+2} = \frac{x}{2(x+2)}$ of which x=3 the a. ⑤次の公式方様式②→③のうちから見るろっか無影解を持っものをニン選 (人、その優勢を答えよ、(5%×2=30点) ① ポー2=+0 ① ポー2±+1=0 0 ポー2±+50 ④ 3ポー2±+1=0 0 ポー2±+5±+60 ④ 3ポー5±+60 0 4ポー4±+1=0 ④ 3ポー5±+60 (3) ① と ① (7)次の名問いに答えよ。
 (1) 2次方程式 x²< xを解け。(5代) (答) $\begin{array}{l} \mathbb{D} \quad \sqrt{-c^2/c^2} = \mathrm{Id} \\ \sqrt{-c^2/c^2} = -5/7 \\ \mathbb{D} \quad 8 \circ p \neq 7 \mathrm{Mid} \quad 3 \circ p \approx 7.5 \\ \mathbb{D} \quad 4 + 1 + 4 - 1 = -4 \circ t \geq 8, \quad (s+1)^2 + (s-1)^2 = 16 \\ \mathbb{D} \quad (s+1)^2 + (s-1)^2 = 0 \\ \mathbb{D} \quad s, \rho \neq \mathrm{Mid} \quad \mathrm{Mid} \quad s, \quad \sigma = \rho = 0 \\ \mathbb{D} \quad s, \rho \neq \mathrm{Mid} \quad \mathrm{Mid} \quad s, \quad \sigma = \rho = 0 \end{array}$ 正しいのは、(①)と(⑤)である。 ③飲の式が5の個等式になるように、ア、イに当てはまる数を答えよ。 (5歳×2=10点) $\frac{|\overline{z}|_{z+3}}{(z+3)(z-4)} = \frac{|\overline{z}|}{z+3} + \frac{5}{z-4} \rightarrow |\overline{z}| = 8$, $|\overline{z}| = 3$ (3) 潮立方程式 |2x+3≥-1 を解け。(5点) (答) x≥-1 (8) 200万程式 x²+Ax+k-1=0 が正と負に一つずつ解巻持つとき、定数 よの満たす範囲を苦えよ。(10点) (苦) k<1
</p>

図7 問と答を印刷

図8 説明の印刷

6. 平成22年度のテスト

まず、間と答。

平成00年度 後期中間試験(数学1) 久保 3年	5x08801822.
H-() (240(1977))	 (1) 2K万幅K(1+3)=-50個年(1)である。[]に置くままるものを, Kの の~のから深た。ただし、(注意教養分支表す。(5点) (茶)(茶)(茶)
	03+15 03+151 0-3+15 0-3+151 0 5+15
■ 次の (ア)、「「に向てはまる数を答えよ、たたし、」は感染剤はなみす。	$\Phi 5 \pm \sqrt{3}$ ($\Phi - 5 \pm \sqrt{3}$) $\Phi - 5 \pm \sqrt{3}$ (
(5# ×2=10#)	② α+β=-5,αβ=-6をみたぎ2つの数α,βを孵にもつ2次方曜式を,次の
$(a^{1}b)^{2} \times (ab^{2})^{2} = a \square_{0} \square_{0}$ $(D = 1)$	◎一章から謂べ、(5点) (※)(◎)
	$\oplus x^2 + 5x + 6 = 0$ $\oplus x^2 + 6x + 5 = 0$ $\oplus x^2 + 5x - 6 = 0$ $\oplus x^2 + 6x - 5 = 0$
$(2) \frac{2}{1+i} + (2+3i) = \mathbb{P} + \mathbb{P} i \rightarrow \mathbb{P} = 3$. $\mathbb{P} = 2$	@ 1,-31+0=0 @ 1,-01+0=0 @ 1,-31-0=0 @ 1,-41-0=0
111	(5) 過去方相式 (メ=3x-2) の解わらた,正であるよの通は,x=門で
2次のの~ゆの記述のうち互しいものを二つ道べ、ただし、4,8は実験とする。	ある。また、このときッ=们である。「四日に当てはまる教を使えよ、
立しいのは、しなうとしなうである。(単不同) (55.×2=105) (T *	(5.6.×2=10.6.) P=(.9.), P=(.7.)
$\oplus \sqrt{25} = \pm 5$ $\oplus \sqrt{(-2)^2} = 2$ $\oplus \frac{\sqrt{3}}{\sqrt{2} + 1} = \frac{3}{4}$	6 KODMULDIX. (55.×3=355)
$ = \sqrt{a^2+b^2} = a + b = \sqrt{-3}\sqrt{-2} = -4 $	 (1) 建立平等式 (2) -3x<0 (2) の解毛,次の中~中から遅べ。 (3) (4)
	© x<3 © x>3 © x≤-2 ⊕ x≥-2 © -2≤x<3 ⊕₩41
3 次の各同いに等よ、(ちま×3=15ま)	
 (1) x+1	② 2次平等式(2x+1)(x-5)<0 の解を,次の①~②から遠べ。(答)(※)
	$\Phi = x < -\frac{1}{2}, x < 3$ $\Phi = x > -\frac{1}{2}, x > 3$ $\Phi = x < -\frac{1}{2}$
<u>1</u> - <u>1</u>	ゆ -1 <x<3 x="" ゆ="">3 ゆ 解なし</x<3>
② ユージュージョー つてある。 □ に当てはよるものを,次のひ~ゆから道べ。	③ 朝谷(すべての実験」である2次で帯拭る,次のの~母から1つ催べ。
$x+y^{+}x-y$ (\$) (\$)	$\bigcirc x^{2}+x-2<0 \bigcirc x^{2}+x-2>0 \oslash -x^{2}+x-2<0 \oslash -x^{2}+x-2>0$
0 4 0 − 4 0 8 0 − 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(春)(春)
, , ,	ア次の各間に答えよ、 (5点×2=10点)
(3) f(x)= x-3 + x+3 と f る と #, f(-√5)=() て # る. □ に m T は z る	 (1) 方程式 25km x + 1=0の0≦x < 2xにおける個を,次のの~のから違べ、
ものを,次のの~ゆから遠べ。 (帯)(中)	0x-3,5r 0x-3,5r 0x-5,5r 0x-5,5r
	$\Phi x = \frac{\pi}{6}, \frac{5}{6}x$ $\Phi x = \frac{\pi}{6}, \frac{11}{6}x$ $\Phi x = \frac{5}{6}x, \frac{7}{6}x$ $\Phi x = \frac{7}{6}x, \frac{11}{6}x$ (8) (0)
4 x 6数式 F(x)=x ⁴ -3x ² -4 について,次の各同いに等えよ。	② 無理力程式 √x−1=x−3の群は,x−□である。□に出てはまる象を
 P(x)をx²+2x+1で割ったときの余りは、回x一日である。 P(x)を 	等えよ。 (客)(客)
出てはまる数を考えよ。(10点) (二(2)) (二(4))	B メについての方程式 1/2 = kx + 1(k+0)がただ1つの実象相をもつとき。定象 k
② P(15)・-1で割ったときの合りは、一つである。「に当てはまる者を	▲を,次の◎~◎から1つ湯べ。(5点) (第)(◎
#1.2. (56) (#) (6)	

図9 問と答の表示

次の図に出てくる筆算は、Studyaid のツールを利用 している(間4)。

こういったツールを Studyaid は用意していて、便利 である。

6. 平成23年度のテスト

これまでと違って、問題の順序をオリジナルの学習 到達度から変更している。

テストとして利用するとき、オリジナルの順番にこ だわるより見た目をよくしたつもりである。

また、図11にあるピンク部分を見れば分かるとおり、 5は、実際には§24の問題であり、順送りに6は§2 1の問題、7は§22の問題、8が§23の問題であ る。ピンク色が問のみの印刷時に無視されるのを利用 して、コメントをして入れている。コメントは、解説 枠のみに入れても良いのだが、このほうが、自分に分 かりやすいため、そうしている。

図 11 問と答の表示

図12 説明の表示

7. おわりに

Studyaid は、ここに紹介した図から分かる以外にも、 関数のグラフや図形の描画機能があり、便利である。

美しい仕上がりを求めると、小問や選択肢を横に並 べるとき、目視での位置調整になるし、改行幅を調整 する機能が無いので、数式を含む行と含まない行で行 間の不揃いが気になるときは、図中数式を使うことに なる。

ここに紹介した中にも図中数式を使っている問題が あるが、小さい図で紹介しているので、どこに使われ ているか分からないだろう。

最後に、高専機構が学習到達度について公表してい るページの URL を紹介しておく。

「国立高専機構 》学習到達度試験」

http://www.kosen-k.go.jp/attainment.html